
 

 

 
 

SCHOOL OF INTERNET OF THINGS 

IOT305TC FINAL YEAR PROJECT 

 

 

MPTCP-Based Link Congestion Detection and 

Traffic Control in Software-Defined Networks 

 

 

Final Thesis 

 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree of 

Bachelor of Engineering 

 

 

 

 

Student Name : Yikun Li 

Student ID : 1929262 

Supervisor : Dr. Bong-Hwan Oh 

Assessor :       



  

ii 

 

Abstract 

This project aims to enhance the performance of Multipath TCP (MPTCP) in congestion 

situations within Software-Defined Networking (SDN) environments. The main 

objectives are to develop a congestion detection algorithm and a traffic control 

mechanism based on MPTCP. The algorithm will accurately detect congestion levels and 

dynamically reroute congested subflows to non-congested paths for congestion balancing. 

The goal is to improve MPTCP's throughput and reduce latency, enhancing its 

performance in various network conditions. The methodology involves implementing an 

SDN controller using the Ryu framework and OpenFlow v1.3, along with Mininet for 

network simulation. The controller will handle IP forwarding, MAC-port learning, and 

flow table entries to facilitate packet forwarding and communication. Additionally, loop 

avoidance mechanisms such as the Spanning Tree Protocol will be employed to prevent 

broadcast storms in looped topologies. The project will evaluate the proposed solution 

through simulations or experiments to assess its effectiveness in improving MPTCP's 

performance during congestion. 

 

Keywords:  Multi-path TCP; Software-Defined Networking; Congestion Detection; 

Traffic Control  
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Chapter 1  

Introduction 

1.1 Motivation, Aims and Objective  

Motivation 

TCP/IP communication is currently restricted to a singular path per connection, despite 

the presence of multiple paths between peers. The utilization of these multiple paths 

concurrently for a TCP session can enhance resource allocation within the network, 

thereby improving the user experience through increased throughput and resilience 

against network failures. Consequently, the development of Multipath TCP (MPTCP) has 

addressed this limitation by enabling the simultaneous utilization of multiple paths 

between peers [1]. 

 

For applications that lack MPTCP awareness, MPTCP operates similarly to TCP. 

However, when additional paths are discovered between peers, MPTCP establishes 

additional sessions, known as MPTCP subflows, on these paths. These subflows, 

combined with the existing sessions, continue to appear as a single connection to the 

applications at both ends [2]. This process is depicted in Figure 1-1. 
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Figure 1-1: MPTCP Usage Scenario 

 

The redundancy offered by Multipath TCP allows for the inverse multiplexing of 

resources, resulting in an increased TCP throughput equivalent to the aggregate capacity 

of all available link-level channels [3]. This stands in contrast to standard TCP, which 

operates on a single channel requirement. Consequently, the utilization of Multipath TCP 

significantly enhances network throughput and reduces latency. 

 

This advantage proves particularly valuable in wireless network environments, such as 

scenarios where both Wi-Fi and cellular networks are simultaneously utilized [4]. 

Moreover, in addition to the achieved throughput gains facilitated by Multipath TCP, 

users have the flexibility to add or remove connections at their discretion without 

interrupting the end-to-end TCP connection. 
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SDN represents an innovative approach to network design, implementation, and 

management, which involves separating the network control (control plane) from the 

forwarding process (data plane) to improve user experience. This separation enables 

network administration and management to become simple, as the SDN architecture 

segregates the routing and forwarding decisions of network elements, such as routers, 

switches, and access points, from the data plane [5]. Meanwhile, the control plane 

focuses only on information related to logical network topology, traffic routing, and 

similar aspects. The data plane is then responsible for managing the network traffic 

according to the established configuration in the control plane. 

 

The network segmentation offered by SDN yields numerous advantages in terms of 

network flexibility and controllability. This is primarily due to the centralized and 

intelligent implementation that provides enhanced visibility into the network for network 

management and maintenance purposes. Additionally, SDN significantly improves 

network control and responsiveness. In contrast, traditional network architectures lack 

these capabilities. 

 

In traditional network architectures, the control plane and data plane are tightly coupled 

within network devices such as routers, switches, and access points. The control plane is 

responsible for making routing decisions and managing network protocols, while the data 

plane handles the forwarding of network traffic based on these decisions. However, the 

lack of separation between the control and data planes limits flexibility, controllability, 

and the ability to customize network functions. 

 

On the other hand, SDN architecture decouples the control plane from the data plane. The 

control plane is centralized and logically separated from the data plane, which allows for 

more efficient network management. The control plane, often implemented through a 

controller, is responsible for managing network policies, traffic routing, and other high-

level network functions. In contrast, the data plane focuses solely on forwarding network 

packets according to the instructions received from the control plane. 
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The separation of the control and data planes in SDN architecture provides several 

advantages over traditional network architectures. It allows for centralized network 

management, where administrators can easily configure and manage the network from a 

single point of control. This centralized control enhances network visibility, making it 

easier to monitor and troubleshoot network issues. Moreover, SDN enables dynamic 

network reconfiguration and adaptation to changing traffic patterns and requirements, 

leading to improved network responsiveness. 

 

In Figure 1-2, a visual representation of the comparison between traditional network 

architecture and SDN architecture can be observed. It illustrates the separation of the 

control and data planes in SDN, highlighting the centralized control and flexibility it 

offers, compared to the tightly coupled nature of traditional network architectures. 

 

 

Figure 1-2: Traditional Architecture vs. SDN Architecture 
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MPTCP utilizes multiple paths concurrently for a single TCP connection, which can lead 

to a substantial number of out-of-order packets, especially when the paths have varying 

bandwidths and latencies [6]. In scenarios where congestion arises on a path, large 

disparities in bandwidth and latency between paths are common and consequential. 

Consequently, MPTCP may not perform as effectively as a single TCP link under such 

circumstances. This finding has been corroborated through experimentation involving the 

introduction of distinct congestion links to a path. 

 

In Figure 1-3, it is evident that MPTCP's performance falls short of that of a single TCP 

link when the congestion link reaches a capacity of 99Mbit/s. This outcome highlights the 

potential limitations of MPTCP in situations where significant congestion occurs. 

 

 

Figure 1-3: Experiment Data 

 

Hence, it is evident that the current implementation of MPTCP not only compromises the 

throughput of TCP links in the network but also fails to ensure optimal performance for 

MPTCP itself. Thus, it is apparent that MPTCP is not Pareto optimal in its current state. 
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In the context of congestion control algorithms employed by MPTCP, the Internet 

Engineering Task Force (IETF) has outlined three primary goals [7], as shown in Table 

1-1: 

 

Goals Description 

Goal 1: Improve Throughput A multipath flow should perform at least 

as well as a single path flow would on the 

best of the paths available to it. 

Goal 2: Do no harm A multipath flow should not take up more 

capacity from any of the resources shared 

by its different paths than if it were a 

single flow using only one of these paths. 

This guarantees it will not unduly harm 

other flows. 

Goal 3: Balance congestion A multipath flow should move as much 

traffic as possible off its most congested 

paths, subject to meeting the first two 

goals. 

Table 1-1: Desirable Properties of Congestion Control Algorithm 

 

Among these goals, only Goal 1 and Goal 2 have been completely implemented in the 

congestion control algorithm used by MPTCP. However, Goal 3 has not been fully 

satisfied in the design of the algorithm [7]. Therefore, it is highly likely that the 

performance degradation observed in MPTCP when a subflow experiences congestion is 

primarily attributed to its "Linked Increase" congestion control algorithm. 

 

The resolution of this problem would indeed enhance MPTCP's performance during 

congestion, leading to increased efficiency in communication networks. Particularly in 

the context of Wide Area Networks (WANs), MPTCP is employed to enhance 
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performance over long distances. By improving MPTCP's congestion control mechanism, 

communication between geographically dispersed devices can be rendered more reliable. 

This improvement has the potential to have a significant impact on technologies like the 

Internet of Things (IoT), which rely on larger bandwidth and lower latency for seamless 

operation. 

 

Aims 

 In light of the mentioned congestion control algorithm, the objective of this project is to 

develop a congestion detection and traffic control algorithm based on MPTCP within the 

context of SDN. The aim is to meet Goal 3 of MPTCP's design, which pertains to 

balancing congestion. 

 

The proposed algorithm will follow a two-step process. Firstly, it will detect congestion 

within the MPTCP subflow and assess whether it has reached a level that impairs the 

overall performance of the MPTCP connection. Once congestion at a significant level is 

identified, the algorithm will dynamically reroute the congested subflow through 

alternative non-congested paths to achieve congestion balancing. This approach aims to 

distribute the network load across available paths effectively. As a result, the overall 

performance degradation of the MPTCP connection will be mitigated, allowing for its 

recovery. 

 

The objective of this algorithm is to enhance MPTCP's performance by refining its 

congestion control mechanism, aiming to achieve Pareto optimality. By optimizing 

MPTCP's congestion control algorithm, the algorithm seeks to increase MPTCP's 

throughput even in congested states while simultaneously reducing latency. This 

improvement will enable MPTCP to achieve a more efficient balance between these two 

important performance metrics, enhancing its overall performance in various network 

conditions, including congested states. 

 

Objective 
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To achieve the goals of this project, the entire process can be divided into several key 

objectives: 

 

Objective 1: Develop a congestion detection algorithm based on MPTCP:  

This objective entails the design and implementation of an algorithm capable of 

accurately detecting link congestion within a SDN environment. The algorithm will 

assess congestion levels by considering factors such as throughput. It is crucial to ensure 

that the algorithm exhibits efficiency, scalability, and adaptability to dynamic network 

conditions. Furthermore, the algorithm should operate independently of the main process, 

thereby maintaining its autonomous functionality within the network infrastructure. 

 

Objective 2: Design adaptive flow control mechanisms for MPTCP flows:  

The proposed mechanism should possess the capability to assess the severity of 

congestion within a subflow and make informed decisions regarding whether detouring is 

necessary. In the presence of severe congestion, the mechanism should facilitate the 

completion of the detour process for the subflow. By accomplishing congestion balancing 

through detouring, the objective is to optimize overall network performance and 

utilization. This process aims to distribute network traffic effectively, alleviating 

congestion and enhancing the efficient utilization of network resources.  

 

Objective 3: Evaluate the performance of the proposed solution:  

To evaluate the effectiveness and efficiency of the developed congestion detection 

algorithms and traffic control mechanisms, it is essential to conduct simulations or 

experiments. During these simulations or experiments, subflows in congestion links 

should be introduced to an idle path while the network is operating under normal 

conditions. This scenario will allow for an assessment of whether the proposed method 

has improved MPTCP network performance during congestion. 

 

By comparing relevant data, such as throughput measurements obtained before 

implementing the method, the impact of the congestion control mechanisms can be 
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evaluated. The comparison will help determine whether the method has resulted in 

enhanced network performance under congested conditions. Through these simulations or 

experiments, the effectiveness and efficiency of the developed congestion detection 

algorithms and traffic control mechanisms can be quantitatively assessed, providing 

valuable insights into their performance within MPTCP networks. 

 

1.2 Literature Review  

The field of computer networking has experienced significant growth in recent years, 

driven by the widespread adoption of data-intensive applications and the escalating need 

for high-performance networks [8]. Consequently, the issue of congestion control has 

become increasingly critical to ensure optimal utilization of network resources and 

maintain a high Quality of Service (QoS). In response to this challenge, numerous 

congestion control algorithms have been developed, each with its specific objectives and 

operational mechanisms. 

 

This literature review aims to investigate a selection of previous congestion control 

algorithms, providing an examination of their underlying principles, operational 

characteristics, and performance evaluations. By comprehensively understanding the 

strengths, limitations, and advancements of these algorithms, can lay the groundwork for 

the development of an effective congestion control mechanism within the context of our 

research focus: MPTCP-Based Link Congestion Detection and Traffic Control in SDN. 

 

Through this literature review, it will explore the evolution of congestion control 

algorithms, highlighting key contributions and advancements in the field. By analyzing 

their operational principles and evaluating their performance under various scenarios, can 

gain valuable insights into their effectiveness in addressing congestion-related challenges. 

This knowledge will inform the development of our proposed congestion control 

mechanism, tailored specifically to the MPTCP framework within the SDN environment. 
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Ultimately, this literature review seeks to synthesize existing research and identify gaps 

in current congestion control approaches. By building upon prior knowledge and 

leveraging the advancements in the field, aim to contribute to the development of a robust 

and efficient congestion control mechanism for MPTCP networks in SDNs. 

 

LIA 

The first and fundamental congestion control algorithm used in current versions of 

MPTCP is the "Linked Increases" Algorithm (LIA). LIA operates by dynamically 

managing the congestion window size for subflows, necessitating a balance between 

achieving optimal congestion balancing and maintaining responsiveness. However, the 

current implementation of LIA faces challenges in achieving both optimal congestion 

balancing and responsiveness simultaneously [7]. This tradeoff prevents the full pooling 

of network resources, resulting in several issues. 

 

One problem arises when upgrading TCP users to MPTCP, as it may lead to a significant 

decrease in the total network throughput without providing any benefits to any individual 

users. This characteristic renders MPTCP non-Pareto optimal [9]. Additionally, MPTCP 

users may exhibit overly aggressive behavior towards TCP users, further impacting 

network performance [10]. 

 

To address these limitations, subsequent congestion control methods have been 

developed to enhance or replace the LIA algorithm. These methods can be categorized 

into different approaches, each offering unique strategies to improve MPTCP's 

congestion control. These advancements aim to optimize congestion balancing, 

responsiveness, and resource pooling within the MPTCP framework, ultimately 

enhancing network performance and efficiency. 

 

OLIA 
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An alternative to LIA is the Opportunistic Linked Increases Algorithm (OLIA), which 

utilizes a similar window-based congestion control mechanism and is considered a 

variant of LIA's Coupled algorithm [11]. However, OLIA takes a different design 

approach, aiming to achieve optimal resource pooling, congestion balancing, and 

responsiveness without sacrificing the congestion balancing capability for responsiveness 

[9]. 

 

OLIA successfully addresses some of the limitations of LIA and has been proven to be 

Pareto optimal, while retaining the responsiveness and non-jitter characteristics of LIA 

[9]. However, in the current dynamic nature of the Internet with its transient traffic 

patterns, OLIA often suffers from low throughput due to its inability to effectively utilize 

the underlying network resources [11]. 

 

To overcome this challenge, further enhancements have been proposed, such as the D-

OLIA method. These improvements aim to enhance the performance of OLIA by 

addressing its limitations and making better use of the underlying network resources. By 

refining the congestion control mechanisms and adapting them to the dynamic nature of 

the Internet, these methods strive to optimize throughput and improve the overall 

performance of MPTCP networks. 

 

Balia 

The Balia algorithm offers a solution to address the non-Pareto optimality issue of LIA 

and the limited responsiveness of OLIA in certain network scenarios. It is also a window-

based congestion control algorithm specifically designed for MPTCP [12]. The key 

distinction of Balia lies in its novel design framework, which provides a structural 

understanding of the MPTCP algorithm [13]. 

 

Balia approaches the problem by mathematically demonstrating an inherent tradeoff 

between TCP friendliness and responsiveness, as well as between responsiveness and 

window oscillations. It theoretically proves that it is impossible to maximize the 
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performance of all three metrics simultaneously. Therefore, Balia aims to achieve 

acceptable levels of window oscillations to improve both TCP friendliness and 

responsiveness. 

 

In contrast to the Coupled algorithm, which can exhibit instability and have multiple 

equilibria, the Balia algorithm is designed to determine the existence, uniqueness, and 

stability of network equilibria [12]. Through extensive testing, Balia has demonstrated a 

favorable balance between these properties, making it a promising congestion control 

mechanism for MPTCP networks. 

 

By addressing the tradeoff between TCP friendliness, responsiveness, and window 

oscillations, Balia provides a refined approach to congestion control that enhances 

network performance and optimizes the behavior of MPTCP connections. 

 

CP Scheduling 

To address the performance degradation caused by a significant number of out-of-order 

packets resulting from congestion, an alternative approach involves improving scheduling 

methods to minimize the impact of packet reordering and optimize overall transmission 

performance within the MPTCP layer. 

 

One such method is CP scheduling (Constraint-based proactive scheduling), which 

tackles the buffer blocking problem that arises when the receiver's (or sender's) buffer 

becomes filled with out-of-order packets [14]. CP scheduling is a proactive solution that 

aims to efficiently schedule packets across paths by considering factors such as buffer 

size and performance differences between paths. 

 

By estimating the number of scrambled packets based on buffer size and path 

performance, CP scheduling determines the optimal path for packet transmission. In 

scenarios where there are significant performance differences between paths, MPTCP 

with CP scheduling achieves comparable or even better throughput than a single TCP 
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connection on the fastest path. On the other hand, when path performances are similar, 

MPTCP with CP scheduling fully utilizes the capacity of all available paths [14]. This 

allows for efficient packet transmission, regardless of buffer size or performance 

discrepancies across multiple paths. 

 

Through the use of CP scheduling, MPTCP can effectively manage packet scheduling 

and minimize the negative impact of congestion-induced reordering, resulting in 

improved overall transmission performance and efficient utilization of available network 

paths. 

 

Dynamic Path Control by SDN 

The advent of SDN has revolutionized network management, introducing a new approach 

to controlling and operating networks [15]. SDN opens up a multitude of possibilities for 

addressing the performance degradation issue, including the dynamic control of MPTCP 

paths through SDN. 

 

In this context, SDN applications can leverage the capabilities of the SDN controller to 

gather estimated capacity information for each path. By analyzing this information, poor-

performing links that contribute significantly to the reordering queue size at the MPTCP 

layer can be identified. When a path is deemed to have insufficient capacity compared to 

other available paths, the SDN controller can intelligently remove that path from MPTCP 

to prevent excessive out-of-order packet blocking [6]. Once the capacity of the path 

reaches a certain threshold, it can be reconnected to the MPTCP network. 

 

This dynamic path control mechanism, enabled by the support of the SDN controller, 

allows MPTCP to adaptively manage subflows based on the available capacity of the 

connected paths. By dynamically switching between the best SPTCP (single-path TCP) 

and MPTCP configurations, MPTCP can maximize download rates. This approach 

leverages the capabilities of SDN to enhance the performance and efficiency of MPTCP 
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in handling network congestion and reordering issues, resulting in improved overall 

transmission rates. 

 

From the several methods mentioned above for solving the MPTCP performance 

degradation problem caused by the congestion link, the following major approaches can 

be seen: 

 

Methods Approach 

LIA, OLIA, Balia Window-Based Congestion Control 

CP scheduling Scheduling Method 

Dynamic MPTCP Path Control SDN 

Table 1-2: Congestion Control Methods and its Approach 

 

Certainly, the Window-Based Congestion Control approach has shown significant 

progress in addressing congestion-related issues. Its efficient mechanisms have 

demonstrated improved performance in managing network congestion. 

 

Moreover, the Scheduling Method has proven to be effective, offering simple and 

efficient solutions to various challenges. This method presents opportunities for 

developing innovative approaches that can further enhance network performance and 

resource allocation. 

 

By combining the benefits of Window-Based Congestion Control and the efficiency of 

the Scheduling Method with the SDN approach, novel and effective strategies can be 

developed to optimize network performance, improve resource allocation, and address 

congestion-related challenges.Given the advancements in SDN, this project aims to 

leverage the capabilities of SDN in proposing new solutions.  
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The SDN-based solutions proposed in this project will utilize the programmability and 

centralized control provided by SDN architectures. This will enable the development of 

intelligent algorithms and mechanisms that can dynamically adapt to changing network 

conditions, efficiently allocate resources, and optimize congestion control. 

 

By harnessing the power of SDN, this project aims to contribute to the ongoing efforts in 

improving network performance, enhancing resource utilization, and providing efficient 

solutions to congestion-related issues in modern computer networks. 

 

Indeed, the concept of diverting traffic to the least congested path is a fundamental 

principle in congestion control [16], [17]. This project will adopt this principle and 

leverage the capabilities of SDN to effectively detour MPTCP subflows that experience 

severe congestion. By utilizing SDN's programmability and centralized control, the 

project will identify the most suitable and idle path to redirect the traffic from congested 

subflows. 

 

Through the use of SDN, the project will dynamically monitor network conditions and 

congestion levels, allowing for real-time detection of severe congestion in MPTCP 

subflows. Upon identifying such congestion, the SDN controller will initiate the detour 

process, rerouting the traffic to the most suitable path that offers the least congestion. 

 

By implementing this approach, the project aims to alleviate congestion-related issues 

and improve the overall performance of MPTCP subflows. By dynamically selecting the 

optimal path, the project seeks to maximize network utilization, enhance throughput, and 

reduce latency. 

 

The utilization of SDN in detouring congested MPTCP subflows demonstrates the 

potential for intelligent and adaptive congestion control mechanisms. By leveraging 

SDN's capabilities, the project aims to enhance the efficiency and effectiveness of 
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congestion control in multipath communication, ultimately improving the user experience 

and optimizing network performance. 

  



  

17 

 

Chapter 2  

Methodology and Results 

2.1 Methodology  

The project will be divided into two main parts: Congestion Detection and Traffic 

Control. Given the project's foundation in SDN network design, the development will 

involve creating an SDN controller that encompasses both of these functions. To 

facilitate this, the project will utilize the Ryu framework, coupled with OpenFlow v1.3, to 

implement the SDN controller. 

 

To simulate the SDN network environment, Mininet will be employed. Mininet provides 

a platform for emulating a network topology and allows for testing and validation of the 

developed algorithms and mechanisms. The testing and development environment for the 

project will be Linux 4.19.234.mptcp, which offers the necessary support for Multipath 

TCP (MPTCP) functionality. 

 

In the Congestion Detection phase, the SDN controller will employ congestion detection 

algorithms and techniques to identify congestion levels within the network. This will 

involve monitoring factors such as throughput. The goal is to accurately detect 

congestion and assess its severity in real-time. 

 

In the Traffic Control phase, the SDN controller will leverage its programmability to 

control and manage the traffic flows within the network. This will involve dynamically 

detouring MPTCP subflows experiencing severe congestion to alternative paths that offer 

better network conditions. The SDN controller will make use of the information obtained 

from the Congestion Detection phase to make informed decisions regarding traffic 

redirection. 
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Throughout the project, the Linux 4.19.234.mptcp environment will provide the 

necessary platform for testing, development, and evaluation of the proposed congestion 

detection and traffic control mechanisms. 

 

By combining the Ryu framework, OpenFlow v1.3, Mininet, and the Linux 

4.19.234.mptcp environment, the project aims to develop and validate an efficient and 

effective SDN-based congestion control solution for MPTCP networks. 

 

In the initial phase of the project, the focus is on establishing basic network 

communication within the SDN environment. As the project utilizes the Ryu framework 

for SDN controller development, the controller's logic and functionalities will align with 

the Ryu framework. 

 

To enable basic communication in the SDN network, the first step is to ensure that IP 

forwarding flow rules are added to all switches in the network. This process will be 

automated and handled by the SDN controller, eliminating the need for manual 

intervention. 

 

The SDN controller, developed using the Ryu framework, will have the capability to 

interact with the network switches using the OpenFlow protocol. It will dynamically 

program the switches by installing appropriate flow rules that enable IP forwarding. 

These flow rules will define how the switches should handle incoming packets and direct 

them to their intended destinations. 

 

By automatically adding IP forwarding flow rules to all switches, the SDN controller 

establishes the foundation for network communication within the SDN environment. This 

allows packets to be forwarded between different hosts or devices connected to the 

network, ensuring connectivity and enabling subsequent stages of the project, such as 

congestion detection and traffic control, to be implemented effectively. 

 



  

19 

 

After the initial setup of the network, when the controller sends a feature request message 

to the switch and receives a response, it signifies the establishment of the communication 

between the controller and the switch. At this stage, it is important to configure the 

switches with appropriate flow table entries to handle different types of packets. 

 

To ensure proper packet processing, three Table-Miss flow table entries are added to all 

switches in the network: Table-Miss, ARP Table-Miss, and IP Table-Miss. Each entry 

serves a specific purpose in managing packet forwarding and processing. 

 

1. Table-Miss: This flow table entry has a match field of ALL, which means it will 

match any packet that hasn't been matched by other higher-priority flow table entries. 

The purpose of the Table-Miss entry is to process non-essential packets, such as 

control traffic or monitoring data. When a packet matches this entry, the switch will 

automatically drop the packet, preventing it from interfering with the normal 

operation of the network. 

 

2. ARP Table-Miss: This flow table entry is used to match ARP packets that do not 

correspond to IP packets but are necessary for maintaining regular network 

communication. ARP (Address Resolution Protocol) is responsible for mapping IP 

addresses to MAC addresses. The ARP Table-Miss entry ensures that ARP packets 

are correctly processed and forwarded within the network. 

 

3. IP Table-Miss: This flow table entry handles IP packets that have not been matched 

by any other flow table entry in the switch. When an IP packet is not matched by 

specific rules, it is sent to the IP Table-Miss entry. This entry typically directs the 

switch to send the packet to the controller for further processing or decision-making. 

It is important to assign a higher priority to the IP Table-Miss entry than the Table-

Miss entry to ensure that IP packets are given priority and properly processed by the 

controller. 
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By adding these Table-Miss, ARP Table-Miss, and IP Table-Miss flow table entries to 

the switches, the controller ensures that non-essential packets are dropped, ARP packets 

are handled appropriately, and unmatched IP packets are forwarded to the controller for 

subsequent operations. This setup establishes a solid foundation for the SDN controller to 

manage and control the network effectively. 

 

When an ofp_event.EventOFPPacketIn event occurs, it indicates that a packet has been 

sent to the controller for processing. The packet_in_handler function is responsible for 

handling these packets and performing the necessary operations. Here's an overview of 

the packet processing steps: 

 

1. Recording Port: The controller first records the port from which the packet was 

received. This information is important for learning the MAC-port pairs of the 

switches. 

 

2. Extracting MAC Addresses: The controller extracts the source and destination MAC 

addresses from the packet. These addresses provide essential information for 

forwarding the packet to its intended destination. 

 

3. MAC-Port Pair Learning: The controller stores the MAC-port pair of the switch in its 

internal memory. This mapping indicates that the source MAC address of the packet 

corresponds to the incoming port. This process helps the controller learn the network 

topology and facilitate future packet forwarding. 

 

4. Destination MAC Address Lookup: The controller checks if it knows the outgoing 

port corresponding to the destination MAC address of the packet. If the mapping 

exists, the packet can be forwarded directly to the appropriate port. Otherwise, 

flooding is required to find the outgoing port. 
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5. Flooding: In the case of flooding, the controller sends the packet to all ports except 

the incoming port. This allows the packet to reach all switches in the network, 

ensuring that the destination host receives it. Other hosts that are not the intended 

recipients will automatically drop the packet. 

 

6. ACK Message and Flow Table Entry: Upon receiving the packet, the destination host 

sends an ACK (Acknowledgment) message in the reverse direction. This ACK packet 

undergoes the same processing steps as mentioned above. However, since the MAC-

port pair of the destination host already exists in the switch, the packet is forwarded 

directly, and a flow table entry is inserted into the switch. This entry helps optimize 

future packet forwarding for similar packets. 

 

7. Flow Table Entry for ARP Packets: The creation of flow table entries for ARP 

packets follows a similar procedure as that for IP packets. The controller handles 

ARP packets and ensures that appropriate flow table entries are inserted in the switch 

for efficient processing and forwarding. 

 

By following these steps, the controller learns the network topology, determines the 

appropriate outgoing ports for packet forwarding, and establishes flow table entries to 

optimize packet handling in the SDN network. 

 

After completing the aforementioned process, IP forwarding rules are established, 

enabling the SDN network to operate and communicate effectively. The network now 

possesses the fundamental functionalities required for proper network operation. 

Consequently, the flow table within the switch should exhibit the following structure: 

 

Flow Rules Priority Actions 

IP Forwarding Rules 3 Outgoing to port 
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ARP Forwarding Rules 3 Outgoing to port 

IP Table-Miss 2 Controller 

ARP Table-Miss 1 Controller 

Table-Miss 0 Drop 

Table 2-1: Flow Table Structure in Preparing Stage 

 

The flow table consists of various entries, each denoting a specific match condition and 

the corresponding action to be executed. The "Table-Miss" entry serves as a default rule, 

instructing the switch to drop packets that do not match any other entries in the flow table. 

The "ARP Table-Miss" entry directs ARP packets to the controller for further processing, 

while the "IP Table-Miss" entry handles IP packets by forwarding them to the controller. 

 

Additionally, the IP flow table contains entries mapping specific destination MAC 

addresses to their respective outgoing ports. These entries enable the switch to forward 

packets directly to their intended destinations, eliminating the need for flooding. The 

table may include multiple such entries, depending on the number of known destination 

MAC addresses in the network. 

 

With the establishment of these IP forwarding rules, the SDN network is equipped with 

the necessary mechanisms to ensure efficient packet forwarding and communication 

throughout the network. 

 

However, in scenarios where the network topology includes loops or rings, a 

phenomenon known as a "Broadcast Storm" can occur, which leads to continuous packet 

flooding within the network. This situation arises due to the presence of redundant paths, 

causing packets to circulate indefinitely and resulting in a dead loop. 
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The broadcast storm occurs as follows: When a broadcast or unknown unicast packet 

enters the network, the switch forwards it to all its connected ports except the one it 

arrived on. In a looped network, the forwarded packet reaches another switch, which in 

turn broadcasts it to all its connected ports, including the one it received from. This 

process continues, causing the packet to circulate repeatedly among the switches and 

propagate throughout the network. As a result, network resources become overwhelmed, 

leading to degraded performance and potential network failures. 

 

To address the issue of broadcast storms in looped topologies, a loop avoidance 

mechanism is required. One widely used approach is the Spanning Tree Protocol (STP), 

which aims to create a loop-free topology by dynamically disabling redundant paths. STP 

operates by electing a root bridge and calculating the shortest path from each switch to 

the root. It then disables specific ports to eliminate loops while maintaining connectivity. 

 

By deploying STP or similar loop avoidance mechanisms in the SDN network, the 

broadcast storm issue can be mitigated. These mechanisms ensure that only the necessary 

paths are active while blocking redundant paths, effectively preventing loops and 

maintaining a stable and efficient network environment. 
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Figure 2-1: Topology Contains Loop 

 

Hence, during each packet_in event for an incoming packet, the controller must 

additionally verify whether the MAC address of the host from which the packet 

originated exists in the MAC-port table. If a match is found, the controller compares the 

port on which the packet entered the switch with the port recorded in the MAC-port table. 

If the ports differ, the controller can deduce that the packet reached this switch after being 

flooded by another switch. To prevent a broadcast storm, the controller instructs the 

switch to discard the packet, effectively halting the flooding process at that switch 

location. Through this mechanism, the forwarding of packets is ensured along a single 

path, even in the presence of a circular topology. 

 

By implementing this logic, the controller actively monitors and manages the network to 

avoid broadcast storms caused by looping topologies. It intelligently detects and 

terminates the flooding of packets to prevent excessive network congestion and 

disruptions. This approach guarantees that packets are forwarded through the network in 

a controlled manner, adhering to the designated paths and maintaining network stability 

and performance. 
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Once the fundamental network operations are established, the next step involves initiating 

congestion detection. The monitoring of congestion will primarily focus on flows, 

necessitating the addition of TCP forwarding flows on specific switches. In this project, 

the chosen switches are the edge switches, which directly connect to the hosts. Therefore, 

the initial task is to identify these switches and include TCP Table-Miss entries in them, 

preparing them to receive TCP flow rules. 

 

By adding TCP Table-Miss entries to the edge switches, they become primed to 

accommodate the insertion of TCP flow rules. This step ensures that these switches are 

equipped to handle TCP traffic and participate in the congestion detection process 

effectively. 

 

To locate the edge switches, the port method is employed, which involves utilizing three 

APIs provided by the Ryu framework: get_host, get_switch, and get_link. These APIs 

are utilized to gather information about all hosts, switches, and links present in the 

network, respectively. By obtaining topology information about all network components, 

the controller can identify the various parts of the network. 

 

During this process, the controller maintains two dictionaries: link_to_port and 

host_or_switch. The link_to_port dictionary is responsible for storing information 

regarding both ends of a link, including the datapath ID (dpid) and port number. On the 

other hand, the host_or_switch dictionary records whether a device is directly connected 

to a host or a switch, specifically identifying it as an edge switch. 

 

By comparing the dpid and port number of both ends of a link with the corresponding 

host information, the controller can determine whether a switch is directly connected to a 

host. If a match is found, the controller marks the corresponding dpid in the 

host_or_switch dictionary, indicating that the switch is an edge switch. This information 
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is crucial for subsequent steps, such as adding TCP Table-Miss entries to the identified 

edge switches. 

 

After identifying the edge switches, their datapaths can be determined using their 

datapath IDs (dpids). The controller can then proceed to add TCP Table-Miss entries 

directly to these switches. It is important to assign a higher priority to this flow rule 

compared to the IP forwarding rules added previously. This ensures that TCP packets will 

match the TCP-related flow rules first. 

 

When a packet matches the TCP Table-Miss entry, it will be forwarded to the controller, 

triggering the packet_in_handler once again. This packet_in_handler will include packet 

filtering conditions, but these conditions will have a higher priority. Therefore, after all 

the flow tables have been added, the structure of the flow table in the edge switches 

should resemble the following: 

 

Flow Rules Priority Actions 

TCP Forwarding Rules 5 Outgoing to port 

TCP Table-Miss 4 Controller 

IP Forwarding Rules 3 Outgoing to port 

ARP Forwarding Rules 3 Outgoing to port 

IP Table-Miss 2 Controller 

ARP Table-Miss 1 Controller 

Table-Miss 0 Drop 

Table 2-2: Final Flow Table Structure 

 

With the flow table structure mentioned above, the TCP forwarding rules, including the 

TCP Table-Miss entry with higher priority, enable the monitoring of MPTCP packets at 
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each location within the network. By matching the MPTCP packets with the TCP 

forwarding rules first, the throughput can be effectively monitored and measured at each 

specific location. 

 

This flow table structure ensures that MPTCP packets are directed to the appropriate flow 

rules for further processing, allowing for accurate monitoring of throughput. This 

monitoring capability provides valuable insights into the performance and congestion 

levels at different points in the network, facilitating congestion detection and traffic 

control mechanisms. 

 

The traffic monitoring and control approach in this project incorporates a concurrent 

monitoring process that runs separately from the main process. This dedicated monitoring 

process periodically sends OFPFlowStatsRequest requests to the switches using the 

datapath information. By leveraging priority filtering, the project can specifically target 

the flow rules of interest and retrieve traffic statistics associated with these flow rules. 

 

The monitoring process calculates the traffic usage of a specific flow rule by subtracting 

the number of bits obtained during each request from the number of bits obtained in the 

previous request. This calculation provides valuable insights into the traffic flow through 

the respective flow rule over a fixed period of time. Implementing a separate monitoring 

process ensures that traffic information can be obtained at regular intervals without 

blocking the main process, allowing for continuous monitoring of flow table information. 

 

In addition to monitoring, the project also employs a concurrent traffic control 

mechanism. When the monitoring process detects a link that exceeds a certain congestion 

threshold, the traffic control mechanism is activated. The primary objective of traffic 

control is to insert flow rules with the highest priority into a specific switch. These high-

priority flow rules temporarily alter the flow direction, effectively detouring the subflow 

experiencing severe congestion. 
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To avoid blocking the main process, the traffic control mechanism operates at regular 

intervals. This concurrent approach enables ongoing monitoring of the network's 

congestion status without disrupting the main process. By periodically evaluating 

congestion levels and dynamically adjusting the flow direction through the insertion of 

high-priority flow rules, the project aims to alleviate congestion and optimize the overall 

network performance. 

 

By integrating a concurrent traffic monitoring process and a traffic control mechanism, 

the project can effectively monitor and respond to congestion events in the SDN network, 

ensuring smooth and efficient operation. 

 

The experiment will be conducted in a simulated environment using Mininet with the 

Linux 4.19.234.mptcp platform. To mimic the network infrastructure, a network topology 

will be created within the Mininet simulation. The simulated topology will consist of a 

set of interconnected switches and hosts, forming a structured network, as following: 

 

Figure 2-2: Topology of Experiment 
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Where host 1 will be the MPTCP client, host 2 will be the MPTCP server, and host 3 will 

be used to simulate the generation of congestion links. monitor will be used to monitor 

the traffic of the MPTCP flow rule from host 1 to host 2 in switch 1. 

 

2.2 Results  

This section contains major results achieved through the project.  

At the start of the experiment, MPTCP passed through the path shown in the following 

diagram: 

 

 

Figure 2-3: Subflow Paths Before Detour 

 

The data collected and monitored by the monitoring process is visualized in the form of a 

line graph, as depicted in the figure below: 
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Figure 2-4: Throughput in Monitor 

 

A notable observation can be made from the line graph, wherein a significant 

performance degradation is evident at a particular point in time before a subsequent 

substantial increase in throughput occurs. This occurrence coincides with the 

implementation of the detour method, providing evidence that severe congestion in one 

subflow adversely affects the performance of the other subflow. 

 

Upon activating the traffic control concurrent process, new flow rules are inserted into 

the target switch, resulting in the diversion of subflow 2 and a modification of its path, as 

depicted in the accompanying figure. 
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Figure 2-5: Subflow Paths After Detour 

 

Notably, after the detour is initiated, subflow 2 coincidentally utilizes the flow rules of 

the path being monitored by the monitoring process. Consequently, the substantial rise in 

throughput reflects the cumulative throughput of both subflow 1 and subflow 2. This 

observation signifies the successful invocation of the detour method and the subsequent 

recovery of MPTCP performance. 

 

This finding underscores the effectiveness of the detour approach in mitigating 

congestion and enhancing the overall performance of MPTCP-based networks. By 

dynamically rerouting subflows and redistributing traffic load, the detour method 

effectively alleviates congestion-induced performance degradation, leading to improved 

throughput and enhanced network performance. 
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Chapter 3  

Conclusion and Future Work 

3.1 Conclusion  

In conclusion, this dissertation focused on the development of an SDN-based congestion 

control solution for Multipath TCP (MPTCP) networks. The project was divided into two 

main parts: Congestion Detection and Traffic Control. By utilizing the Ryu framework, 

OpenFlow v1.3, Mininet, and the Linux 4.19.234.mptcp environment, an SDN controller 

was created to encompass both functions. 

 

In the Congestion Detection phase, the SDN controller employed congestion detection 

algorithms to monitor factors such as throughput and identify congestion levels in real-

time. The Traffic Control phase leveraged the programmability of the SDN controller to 

manage and control traffic flows. By dynamically detouring MPTCP subflows 

experiencing severe congestion to alternative paths, the controller optimized network 

conditions. 

 

The initial setup focused on establishing basic network communication within the SDN 

environment using IP forwarding flow rules. The SDN controller, developed using the 

Ryu framework, interacted with the switches using the OpenFlow protocol to install 

appropriate flow rules for packet forwarding. 

 

To ensure proper packet processing, Table-Miss, ARP Table-Miss, and IP Table-Miss 

flow table entries were added to the switches. These entries handled non-essential packets, 

ARP packets, and unmatched IP packets, respectively. By automatically adding these 

entries, the SDN controller facilitated network connectivity and laid the foundation for 

congestion detection and traffic control mechanisms. 
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The project also addressed the issue of broadcast storms in looped topologies by 

implementing a loop avoidance mechanism such as the Spanning Tree Protocol (STP). 

By actively monitoring the network and instructing switches to discard flooded packets, 

the controller prevented excessive network congestion and disruptions, maintaining 

stability and performance. 

 

The congestion detection phase involved adding TCP Table-Miss entries to edge switches 

and employing priority-based filtering to monitor MPTCP packets. Through a separate 

monitoring process, traffic statistics were periodically retrieved from flow rules, enabling 

accurate measurement of traffic usage and congestion levels. 

 

In conclusion, this dissertation successfully developed an SDN-based congestion control 

solution for MPTCP networks. The implemented SDN controller, in conjunction with the 

Ryu framework, OpenFlow v1.3, Mininet, and the Linux 4.19.234.mptcp environment, 

demonstrated efficient congestion detection and traffic control capabilities. The project's 

contributions in addressing congestion and optimizing network performance provide 

valuable insights for future research and advancements in SDN-based networking. 

 

3.2 Future Work  

The preceding sections of this paper have presented an innovative SDN-based congestion 

control solution for multipath TCP networks. The developed solution leverages software-

defined networking principles to detect congestion and dynamically reroute traffic across 

available paths, effectively mitigating congestion-related performance issues. While the 

proposed solution demonstrates promising results in small-scale network environments, 

there are several avenues for future work to enhance and extend its capabilities. 

 

In this section, will outline the potential future directions that can be pursued to further 

improve the effectiveness and applicability of the SDN-based congestion control solution. 
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These future work areas encompass advanced congestion detection algorithms, 

optimization of traffic control mechanisms, integration of Quality of Service (QoS) 

mechanisms, evaluation in large-scale networks, security and robustness analysis, 

deployment in real-world environments, and standardization efforts. By addressing these 

areas, aims to refine the solution and contribute to the advancement of SDN-based 

congestion control techniques in multipath TCP networks. Through these endeavors, aim 

to enhance the accuracy and responsiveness of congestion detection, optimize traffic 

control decisions for efficient resource utilization, prioritize critical applications through 

QoS mechanisms, evaluate the solution's performance in large-scale networks, ensure 

security and robustness in the face of potential threats, validate the solution through real-

world deployments, and foster industry adoption through standardization efforts. 

 

Enhancing Congestion Detection Algorithms: The current project focuses on 

implementing basic congestion detection algorithms and techniques. In future work, more 

advanced and sophisticated congestion detection algorithms can be explored and 

integrated into the SDN controller. These algorithms could leverage machine learning 

techniques, such as anomaly detection or predictive models, to improve the accuracy and 

responsiveness of congestion detection in real-time. 

 

Optimizing Traffic Control Mechanisms: The traffic control phase of the project involves 

detouring MPTCP subflows to alternative paths based on congestion levels. Future work 

can involve optimizing the traffic control mechanisms to ensure efficient utilization of 

network resources. This can include developing dynamic routing algorithms that consider 

factors such as available bandwidth, latency, and path reliability to make informed 

decisions on traffic redirection. Additionally, the project can explore load balancing 

techniques to evenly distribute traffic across available paths, further enhancing network 

performance. 

 

Integration of Quality of Service (QoS) Mechanisms: To enhance the overall user 

experience and prioritize critical applications, future work can focus on integrating 
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Quality of Service (QoS) mechanisms into the SDN controller. QoS mechanisms can 

prioritize certain types of traffic, such as real-time communication or video streaming, 

over others during periods of congestion. This integration can involve assigning different 

levels of service based on application requirements and dynamically adjusting traffic 

control decisions based on QoS priorities. 

 

Evaluation in Large-Scale Networks: The current project primarily focuses on developing 

and validating the SDN-based congestion control solution in a small-scale network 

environment using Mininet. Future work can involve scaling up the network topology 

and evaluating the solution in large-scale networks with a higher number of hosts, 

switches, and paths. This evaluation will provide valuable insights into the performance 

and scalability of the proposed solution and its applicability in real-world scenarios. 

 

Security and Robustness Analysis: As SDN-based networks become more prevalent, it is 

crucial to assess the security and robustness of the proposed solution. Future work can 

involve conducting thorough security analysis, identifying potential vulnerabilities, and 

implementing appropriate security measures to protect the SDN controller and network 

infrastructure from attacks. Additionally, robustness analysis can be performed to 

evaluate the solution's resilience to failures, such as link or switch failures, and devise 

mechanisms for quick recovery and network stability. 

 

Deployment and Real-World Testing: To validate the effectiveness of the proposed SDN-

based congestion control solution, future work can focus on deploying the solution in a 

real-world network environment. This deployment can involve collaborating with 

network operators or organizations to implement the solution in their SDN-enabled 

networks and conducting extensive field testing. The real-world testing will provide 

valuable feedback and insights for further refinement and optimization of the solution. 

 

Standardization and Industry Adoption: To ensure widespread adoption and compatibility 

with different SDN frameworks and equipment, future work can involve standardization 
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efforts and engagement with relevant industry bodies. By aligning the proposed solution 

with industry standards, it becomes more attractive for integration into commercial SDN 

deployments. Collaboration with industry stakeholders can help drive adoption and 

facilitate the development of interoperable and scalable SDN-based congestion control 

solutions. 
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